Theorem (Sums, difference and scalar multiples of Riemann integrable functions are Riemann integrable)

If \(f \) and \(g \) are Riemann integrable on \([a, b] \), then \(f + g \), \(f - g \), and \(cf \) are Riemann integrable and
\[
1. \quad S_a^b f + g = S_a^b f + S_a^b g \\
2. \quad S_a^b cf = c S_a^b f
\]

Proof

1. Let \(\varepsilon > 0 \) be given.
 There exists \(\delta_1 > 0 \) so that if \(\|P\| < \delta_1 \), then \(|S(P, f) - S_a^b f| < \frac{\varepsilon}{2} \)
 There exists \(\delta_2 > 0 \) so that if \(\|P\| < \delta_2 \), then \(|S(P, g) - S_a^b g| < \frac{\varepsilon}{2} \)

 Let \(\delta = \min\{\delta_1, \delta_2\} \)

 Assume \(\|P\| < \delta \)

 \[
 S(P, f + g) = \sum_{i=1}^{n} (f(x_i^*) + g(x_i^*)) \Delta x_i = \sum_{i=1}^{n} f(x_i^*) \Delta x_i + \sum_{i=1}^{n} g(x_i^*) \Delta x_i = S(P, f) + S(P, g)
 \]

 \[
 |S(P, f + g) - S_a^b f + S_a^b g| = |S(P, f) - S_a^b f + S(P, g) - S_a^b g| \\
 \leq |S(P, f) - S_a^b f| + |S(P, g) - S_a^b g| \\
 < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
 \]

2. If \(c = 0 \), then \(cf = 0 \) is a constant which is Riemann integrable.

 If \(c \neq 0 \) then

 There exists \(\delta > 0 \) so that if \(\|P\| < \delta \), then \(|S(P, f) - S_a^b f| < \frac{\varepsilon}{|c|} \)

 Assume \(\|P\| < \delta \)

 \[
 |S(P, cf) - c S_a^b f| = |c S(P, f) - c S_a^b f| \\
 = |c| |S(P, f) - S_a^b f| \\
 < |c| \delta \\
 < |c| \frac{\varepsilon}{|c|} \\
 = \varepsilon
 \]
Thm (Integration maintains order)
Let \(f, g \) be Riemann integrable with \(f(x) \leq g(x) \) for all \(x \in [a, b] \)***
then \(\int_a^b f \leq \int_a^b g \)

proof

Case 1 Assume \(h(x) \geq 0 \) for all \(x \in [a, b] \)
\[
L(P, h) = \sum_{i=1}^{n} m_i \Delta x_i \geq 0 \quad \text{for any partition } P
\]
\[
\Rightarrow \sup\{L(P, h) : P \in \mathcal{P}\} \geq 0
\]
\[
\Rightarrow \int_a^b h = \int_a^b h \geq 0
\]

Case 2 \(g(x) - f(x) \geq 0 \)
Apply case 1 with \(h(x) = g(x) - f(x) \) and difference them
\[
0 \leq \int_a^b (g - f) = \int_a^b g - \int_a^b f
\]
\[
\Rightarrow \int_a^b f \leq \int_a^b g
\]

Thm (Integrability when you split an interval)
If \(f \) is Riemann Integrable on \([a, b]\) and \(a < c < b \) then \(f \) is Riemann Integrable on \([a, c]\) and \([c, b]\) and \(\int_a^b f = \int_a^c f + \int_c^b f \)

proof

Let \(\varepsilon > 0 \) be given
There exists a partition \(P \) such that \(U(P, f) - L(P, f) < \varepsilon \)
Let \(P_1 = P \cap [a, c] \) then \(P_1 \cup P_2 \) is a partition of \([a, c]\)
Let \(P_2 = P \cap [c, b] \) then \(P_2 \cup P_3 \) is a partition of \([c, b]\)
\[
U(P, f) = U(P_1, f) + U(P_2, f) \quad \text{and} \quad L(P, f) = L(P_1, f) + L(P_2, f)
\]
\[
U(P_1, f) - L(P_1, f) = U(P_1, f) - U(P_2, f) - (L(P_1, f) - L(P_2, f))
\]
\[
= U(P, f) - L(P, f) - (U(P_2, f) - L(P_2, f)) \quad \text{positive}
\]
\[
< \varepsilon
\]
\[U(P_2,f) - L(P_2,f) = U(P_1,f) - U(P_1,f) - (L(P_1,f) - L(P_1,f)) \]
\[= U(P, f) - L(P, f) - (U(P, f) - L(P, f)) \text{ for all } n \]
\[< \epsilon \]

So \(f \) is Riemann integrable on both \([a, c] \) and \([c, b] \) since we found a partition where the difference between upper and lower sums is less than \(\epsilon \).

\[\int_{a}^{b} f \leq U(P, f) \]
\[= U(P_1, f) + U(P_2, f) \]
\[< L(P_1, f) + L(P_2, f) + \epsilon \]
\[< \int_{a}^{c} f + \int_{c}^{b} f + \epsilon \]

Since \(\epsilon \) is arbitrary,

\[\int_{a}^{b} f \leq \int_{a}^{c} f + \int_{c}^{b} f \]

On the other hand,

\[\int_{a}^{b} f \geq L(P, f) \]
\[= L(P_1, f) + L(P_2, f) \]
\[> U(P_1, f) + U(P_2, f) \]
\[> \int_{a}^{c} f + \int_{c}^{b} f - \epsilon \]

Since \(\epsilon \) is arbitrary,

\[\int_{a}^{b} f \geq \int_{a}^{c} f + \int_{c}^{b} f \]

\[\therefore \int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f \]

In general, the composition of two Riemann integrable functions is not necessarily Riemann integrable.

Thm (Composition of Riemann Integrable and Continuous is Riemann Integrable)

If \(f: [a, b] \rightarrow \mathbb{R}, M \) is Riemann Integrable and \(g: \mathbb{R} \rightarrow M \) is continuous, then \(g \circ f \) is Riemann Integrable.

proof (see book)
Thm (Integrability of Product, Absolute Value, min, max)

Let \(f, g \) be Riemann Integrable then
1. \(f g \) is Riemann Integrable
2. \(|f| \) is Riemann Integrable and \(\int_a^b |f| \leq \int_a^b |f| \)
3. \(\text{min}\{f, g\} \) and \(\text{max}\{f, g\} \) are Riemann Integrable

proof (see book)

Thm

If \(f \) is Riemann Integrable and \(q = f \) except at a finite number of points on \([a, b]\) then \(g \) is Riemann Integrable and \(\int_a^b g \)

proof

Case 1 \(h(x) = 0 \) except at a finite number of points on \([a, b]\)

\[
h(x) = \begin{cases} c_i & x_i < x < x_{i+1} \\ 0 & x \notin [x_i, x_{i+1}] \end{cases}
\]

Let \(\delta = \frac{\varepsilon}{C_m} \) and \(C_m = \text{max}\{c_1, c_2, \ldots, c_k\} \)

Let \(\varepsilon > 0 \) be given

Let \(\delta_1 = \delta \)

Let the partition \(P \) be given by:

* If \(x_i - \frac{\varepsilon}{3} < x < x_{i+1} - \frac{\varepsilon}{3} \) if not eliminate \(x_i - \frac{\varepsilon}{3} \)

\[
U(P, h) - L(P, h) \leq \sum_{i=1}^{k} C_M (x_i + \frac{\varepsilon}{3} - (x_i - \frac{\varepsilon}{3})) - \sum_{i=1}^{k} C_m (x_i + \frac{\varepsilon}{3} - (x_i - \frac{\varepsilon}{3}))
\]

\[
= \sum_{i=1}^{k} (C_M - C_m) \frac{2\varepsilon}{3}
\]

\[
< \frac{2k (C_M - C_m) \frac{\varepsilon}{3}}{2k (C_M - C_m)} = \varepsilon
\]

\[
< 2k (C_M - C_m) \frac{\varepsilon}{3}
\]
\[U(P, h) \leq \frac{2k \cdot C_M \cdot \varepsilon}{3} \leq \frac{C_h}{C_M} \cdot \varepsilon \leq \varepsilon \]

\[\Rightarrow \sum_{a} h = 0 \]

Case 2 \[f(x) = g(x) \] for all \(x \) except \(x_1, x_2, \ldots, x_k \)

Let \(h(x) = f(x) - g(x) \)

\[h(x) = 0 \text{ for all } x \text{ except } x_1, x_2, \ldots, x_k \]

Apply Case 1

\[\sum_{a} h = 0 \Rightarrow \sum_{a} f - g = 0 \]

\[\Rightarrow \sum_{a} f - \sum_{a} g = 0 \]

\[\Rightarrow \sum_{a} f = \sum_{a} g \]

Thm (Riemann Integrable on Subintervals)

If \(f \) is bounded and Riemann Integrable on every subinterval of \([a, b]\) then \(f \) is Riemann Integrable on \([a, b]\).

Proof (see book)