Thm \hspace{1em} (Sequential Continuity is Equivalent to Continuity)

Let \(f : D \rightarrow \mathbb{R} \) and \(c \in D \). Then \(f \) is continuous at \(c \) iff for every sequence \((x_n)_{n \in \mathbb{N}} \) in \(D \) with \(\lim_{n \to \infty} x_n = c \) then \(\lim_{n \to \infty} f(x_n) = f(c) \).

Proof

\[\exists \] Assume \(f \) is continuous at \(c \).

Let \((x_n)_{n \in \mathbb{N}} \) be a sequence in \(D \) with \(\lim_{n \to \infty} x_n = c \).

Let \(\varepsilon > 0 \) be given.

Because \(f \) is continuous at \(c \) there exist \(\delta > 0 \) so that \(|x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon \).

For this choice of \(\delta > 0 \) there exist \(n_0 \in \mathbb{N} \) so that \(n > n_0 \Rightarrow |x_n - c| < \delta \).

\[\underline{\text{Assume} \ n > n_0} \]

\[|x_n - c| < \delta \Rightarrow |f(x_n) - f(c)| < \varepsilon \]

\[\therefore \ \lim_{n \to \infty} f(x_n) = f(c) \]

\[\implies \] Assume \(f \) has the property for all sequences \((x_n)_{n \in \mathbb{N}} \) in \(D \) with \(\lim_{n \to \infty} x_n = c \) then \(\lim_{n \to \infty} f(x_n) = f(c) \).

(by contradiction)

Suppose \(f \) is not continuous at \(c \).

There exist an exceptional \(\varepsilon_0 > 0 \) so that for all choices of \(\delta > 0 \) there is \(x \in D \cap (c - \delta, c + \delta) \) and \(|f(x) - f(c)| \geq \varepsilon_0 \).

Let \(\delta_n = \frac{1}{n} > 0 \).

Choose \(x_1 \in D \cap (c - \frac{1}{n}, c + \frac{1}{n}) \)
\(x_2 \in D \cap (c - \frac{1}{n}, c + \frac{1}{n}) \)
\[\vdots \]
\(x_n \in D \cap (c - \frac{1}{n}, c + \frac{1}{n}) \)
\[\lim_{n \to \infty} x_n = c \quad \text{By the squeeze theorem} \]

But \(|f(x_n) - f(c)| \geq \varepsilon_0 \) for all \(n \).

\[\lim_{n \to \infty} f(x_n) \neq f(c) \]

This contradicts the property \(f \) is supposed to have.

\[\therefore f \text{ is continuous at } c \]

This is used to give us a couple conditions on continuity and discontinuity.

Theorem (Sequential discontinuity)

Let \(f : D \to \mathbb{R} \) and \(c \in D \)

1. If \((x_n)_{n \in \mathbb{N}}\) and \((y_n)_{n \in \mathbb{N}}\) are sequences in \(D \) with
 \[\lim_{n \to \infty} x_n = c \quad \text{and} \quad \lim_{n \to \infty} y_n = c \quad \text{and} \quad \lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(y_n) \]
 then \(f \) is discontinuous at \(c \).

2. If \((x_n)_{n \in \mathbb{N}}\) is a sequence in \(D \) with \(\lim_{n \to \infty} x_n = c \)
 and \(\lim_{n \to \infty} f(x_n) \neq c \) then \(f \) is discontinuous at \(c \).

Proof

1. Limits of sequences are unique if \(f \) is continuous at \(c \) then \(\lim_{n \to \infty} f(x_n) = f(c) = \lim_{n \to \infty} f(y_n) \).

2. This is the contrapositive of the equivalence of sequential continuity theorem.

Examples

\[f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \geq 0 \end{cases} \]

\(f \) is discontinuous at \(0 \)

Let \(x_n = \frac{-1}{n} \) and \(y_n = \frac{1}{n} \)

\[\lim_{n \to \infty} x_n = 0 \quad \text{and} \quad \lim_{n \to \infty} y_n = 0 \]

\[\lim_{n \to \infty} f(x_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} f(y_n) = 1 \]
$(q_n)_{n \in \mathbb{N}}$ is a sequence in \mathbb{N} to converge $J_{n_0} \in \mathbb{N}$.

So that $n > n_0 \Rightarrow q_{n_k} = q_0 \in \mathbb{N}$ (eventually constant)

$\Rightarrow x_{n_k} \rightarrow c$ and $\frac{p_{n_k}}{q_{n_k}} \rightarrow c$ and $\frac{p_{n_k}}{q_0} \rightarrow c$

$\Rightarrow p_{n_k} \rightarrow q_0 c \quad q_0 \in \mathbb{N}$

Since (p_{n_k}) is a sequence in \mathbb{N} to converge $J_{n_0} \in \mathbb{N}$

So that $n > n_0 \Rightarrow p_{n_k} = p_0 \in \mathbb{N}$ (eventually constant)

$\Rightarrow \lim_{k \rightarrow \infty} p_{n_k} = p_0$

$\Rightarrow p_0 = q_0 c$

$\Rightarrow \frac{p_0}{q_0} = c$

$\Rightarrow c$ is natural (contradiction)
Let $f(x) = \begin{cases}
0 & \text{x is rational} \\
1 & \text{x is irrational}
\end{cases}$

$f(x)$ is discontinuous everywhere.

Let $c \in \mathbb{R}$.

Since \mathbb{Q} is dense there exists $(x_n)_{n \in \mathbb{N}}$ for \mathbb{Q} such that $x_n \to c$.

Since $\mathbb{R} \setminus \mathbb{Q}$ is dense there exists $(y_n)_{n \in \mathbb{N}}$ for $\mathbb{R} \setminus \mathbb{Q}$ such that $y_n \to c$.

But, $\lim_{n \to \infty} f(x_n) = 0$.

$\lim_{n \to \infty} f(y_n) = 1$.

$f(x) = \begin{cases}
0 & \text{x is irrational} \\
\frac{1}{n} & \text{x is rational, x = $\frac{m}{n}$ with $\frac{m}{n}$ in lowest terms}
\end{cases}$

$f(x)$ is continuous on the irrational numbers and discontinuous on the rational numbers.

To show f is discontinuous on the rational numbers

Let $c \in \mathbb{Q}$.

There exists $(x_n)_{n \in \mathbb{N}}$ in $\mathbb{R} \setminus \mathbb{Q}$ such that $x_n \to c$.

But $f(c) = \frac{1}{n} \to 0$.

To show f is continuous on the irrational numbers

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence of rational numbers converging to $c \in \mathbb{R} \setminus \mathbb{Q}$.

$x_n = \frac{p_n}{q_n}$ with $\frac{p_n}{q_n}$ in lowest terms.

If q_n bounded then there exist (q_{n_k}) a convergent subsequence.